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Yet in spite of advances in hospital treatment, hospitafttinoe to be a breeding ground for several airborne
diseases and for diseases that are transmitted through abogacts like SARS, methicillin-resistant Staphylo-
coccus aureus (MRSA), norovirus infections and tuberdsilEB). Here we extract contact networks for up to
295,108 inpatients for durations up to two years from a degatused for administrating a local public healthcare
system serving a population of 1.9 million individuals. ustural and dynamical properties of the network of
importance for the transmission of contagious diseasethareanalyzed by methods from network epidemiol-
ogy. The contact networks are found to be very much detedrtyean extreme (age independent) variation in
duration of hospital stays and the hospital structure. \Wektfiat that the structure of contacts between in-patients
exhibit structural properties, such as a high level of fitavity (IL)), assortativity ((2) and variation in number of
contactsl(3), that are likely to be of importance for the $raission of less contagious diseases. If these proper-
ties are considered when designing prevention programssthéor and the &ect of epidemic outbreaks may be
decreased.

I. LIMITATIONS OF TRADITIONAL EPIDEMIOLOGY most contact networks studied are known téfeti signifi-
cantly from random interaction.
A central parameter within infection epidemiology is the
basic reproduction numbd®, (3). Ry is used to estimate
whether a disease is contagious enough to generate an epi-NETWORK STRUCTURE AND DISEASE DYNAMICS
demic in a specific population. In its simplest form, is define
as the eXpeCted number of individuals that an infected indi- Many contact networks are characterized by a h|gh level
vidual will infect in a completely susceptible populatio.  of transitivity; that is, the number of triangles in the netw
all individuals in a population have approximately the sames much larger than is found in an average network having
number of contacts, and the probability that any pair of-indi the same frequency distribution of number of contddts (5). A
viduals will meet is equaRo can be estimated by the function |arge C|ustering cd@cient tends to slow down epidemics be-
below: cause the probability that an infected person’s contaclis wi
already be infected is very high in such a netwaikl(6; 7). A
Ro = 68D, 1) common way to estimate clustering in a network is to estimate
its relative number of triangles, or more exactly, to caitel
the fractionC of all paths of length three in the network which
form a triangle:

wherec stands for umber of contacts per time ugigr likeli-
hood of passing on an infection per contact, &nfibr the av-
erage time an individual is infectious (measured in same tim
unit asc). To make an epidemic possible, the infected person 3N

must infect more than one person on average. The threshold C = Tange (3)
value for epidemics is therefoFg = 1. Muriple
misleading resul. Anderaon and Miay have demonatated 4rENuasge S the number of rangles (fully connected sub-

a great variation in number of contacts may compensate fogr"’“:)hS of three vertices) amiipie is the number of triples of

a low average number of contadts (3). This is because inglertices connected by two or three contacts. The factoethre

viduals with many contacts have a far greater probability of® needed to normaliz€ to the interval [Q1].

becoming infected, and of passing on an infection. Theegfor | Another diference between contact and random networks
in populations with great variation in number of conta&g is that most contact networks are assortative by number of
should be calculated as: " contactsl(2). This means that individuals who have many con-

tacts tend to have contact with other individuals who ala@ha
a? many contacts, and vice versa. The number of contacts is usu-
Ro = ¢5D (1 + ?) (2) ally referred to as “degree” in network theory, and we will
use this term here. High assortativity decreases the epidem
where o? denotes the variance in the number of contactsthreshold value among individuals who have many contacts.
Another reason thaR, can be an oversimplification is that The standard measure is the assortative mixinghooentr;



thatis, the symmetric correlation déieient between the indi-

viduals’ degrees on each side of all contacts: 0.01 1
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wherek; is the degree of thgh argument in a list of the con- 5‘5 1073} 1 m(:/nth 7
(2). -
tacts (2) 1075k 6 months
10-7k 1 year
lll. CONTACT NETWORKS OF PATIENTS o -O- 2years
10_ F 1 1 1
We will now construct networks generated from a unique 1 10 1k00 1000
database consisting of 295,108 individuals who were regis- 5 . . . . . . .
tered as “in-patients” at any hospital in Stockholm county S | <]
(pop. 1.8 million) during 2001 and 2002. o 4k i
We want a contact to represent closeness in space and time. T | i
Our spatial requirement is that two patients should be onthe .S ;| o i
same ward. For the temporal aspect we let closeness be a net- § | <o i
work parameter, and we regard a contact between patientsas g ,| ¢ i
established if they were hospitalized on the same ward fora © “lo | , , , , , ,
durationt, (overlap time) or longer. A, = 0 means that con- 0 100 200 300 400 500 600 700 800
tacts between one patient who was admitted the same day as t (days)

another patient was discharged are included. Furthermere, FIG. 1 The degree distribution and itfext on the reproduction

let the sampling time window ,S'Zﬂt t_)e another parameter. number. In the upper panel we see the probability densitgtiom
The two parametert, and At yield different networks that  py) versusk (with logarithmic binning) for networks with overlap
are relevant to dierent diseases. For example, for diseases, = 0 and diferent time windows. The lower panel shows the cor-
such as measles, SARS, and norovirus, which spread rapidligction to the basic reproduction numigras a function of the time

a narrow time window will be appropriate (8); for diseases re window size fort, = 0. For example, foAt = 2 years an epidemic
quiring prolonged contact for transmission, like tubeosis, can occur by a disease five times less transmissible thaicfeedby

the relevant network is represented by a latger traditional models.
1 T T
IV. NETWORK STRUCTURAL PROPERTIES
A. Degree distribution
~ 0.1} 1
We will start by plotting the probability density function 3
P(k) for an individual to havek contacts. This function is N
S o
plotted for, respectively: 0.01L |
e One weekday in January. .
all patients
¢ The entire month of January. patients under 65 years
e The first six months of 2001. 0'0011' ' 100

10
e The whole period 2001-2002. tqur (days)

In Figure1A we see the development of this contact strucFIG. 2 The probability that any hospitalization lagtsor longer.
ture from an exponential distribution to a degree distidiut In A, all data are used; in B, the patients over 60 years ar@veth
with a truncated “fat tail.” It is clear that variation in tinam-  from the data set.
ber of contacts between individuals increases with timg- Fi
ure[1B shows the degree to which calculated using Equiltion 1
must be compensated according to Equdflon 2 for this ineread?- Transitivity and assortativity
in variation. The skewed degree distribution in our case is

related to the power-law-like distribution of hospitalibm ~We will now investigate how transitivity;, and assortativ-
times (see Figurid 2 and Sddl. B). The distribution of hobpita ity, r, vary with sampling timeAt, and overlap timety,.
ization will indirectly lead to “preferential attachmen;110) In Figure[3(A) we display the clustering dieient,C, and

(that is, a heightened probability of high-degree vertites in Figure[3(B) the level of assortative mixing,as functions
form additional contacts)—a well known mechanism for pro-of our time intervald, andAt. We note that both parameters
ducing fat-tailed degree distributions (11). exhibit a very similar functional formC andr both decrease
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FIG. 3 The clustering (A) and assortative mixing (B) fia@ents,C andr, as functions of sampling timat, and overlap timet,.

with At when is held constant for smalj, butincrease when decay over time.

tol is held constant for large values ff. Both parameters That C increases with, (for fixed At) may seem counter-
behave in a similar way whetit is held constant. For small intuitive: As t, grows, the network will have fewer edges,
values ofty|, the parameters first increase and then start to deand also fewer triangles. We have constructed a simple agent
crease as a function &fi. For large values dof,, both param-  based model that shows that a prerequisite for this is the ob-
eters first increase witty until they converge at a high level served skewed distribution of hospital stays (see Séct. C).

of clustering and assortativity.

The estimated high levels for th@& and ther parameters,
and the resemblance in functional form betweenrtsarface V. SUMMARY AND CONCLUSIONS
and theC-surface in Figurgl3 are a consequence of the com-
partmental structure of the healthcare system. Assume a hy- Our study of a very large inpatient database shows that hos-
pothetical network2 in which all inpatients stay on the same pital systems characteristically have a very large vamigin
ward during the entire duration aft. In such a network, duration of hospital stays, which generates a correspghdin
each inpatient will have a link to each other inpatient on thdarge variation in number of contacts. We have further shown
same ward. The level of clustering between the inpatientéhat the clustering cdicient and assortative mixing depend
will therefore equal 1, both locally on each ward and glob-greatly on sampling time and the length of time that two in-
ally throughout the whole healthcare system, because ke lin patients must spend together for contact to fieated. Both
exist between inpatients onfiirent wards irQ. It is trivial ~ of these cofficients,C andr, become extremely large in our
that the level of assortativity can only be defined if there isreal-life network whert, andAt are large. This is alarming
a variation in ward size, and thatin these cases must equal because it has been shown that both a high level of clustering
1 because the degree of contacts on each side of each ligkad a high level of assortative interaction decrease the epi
will be equal. Our results show that networks defined by ademic threshold/{1;]2). Any strategy to intervene with dis-
large value of, and a large value aft come very close te. ease spread in a hospital environment must take into account
Both C andr are large, and the vast majority of individuals in this departure from assumptions of random interaction @aad h
these networks are registered as inpatients only once pdr wamogenous mixing. For infections with high transmissilgjlit
(see supplementary material). If we relax the restrictioms short incubation times and short duration of infectiousnes
Q such that each inpatient stays on the same ward during trgtich as norovirus infections and SARS, our finding may be
entire period ofAt, the C andr parameters may drop below less important. However, for diseases such as tubercuosis
1. This makes it possible for triples, which not are triasgle MRSA characterized by low transmissibility and long dura-
to be formed between inpatients that stay offiedlent wards, tion of infectiousness, it becomes necessary to take thia-va
and between inpatients that stay on the same wards but at difon into consideration because a high variance will lovier t
ferent times. This also makes it possible for links to form be epidemic threshold.
tween nodes with dierent degrees. The same occurs where Our findings indicate that the individuals with many con-
At increases whety, is held constant for low levels ¢f. The  tacts are significant for the spread of infectious diseasts w
decay inC andr is a result of the skew distribution of hospital- long duration of infectiousness. These high-risk indiatsu
ization times (FiglR)—a long-term patient A will formatlp  will probably be identifiable through hospital patient isteg-
(but not a triangle) with the many pairs of short-term paten tion systems, and should be the first to be targeted by contact
whose hospitalization does not overlap with each otherts butracing. The high level of clustering further indicatesttha
does overlap with A. This situation, and the number of inpa-may be worth screening all inpatients that have spent time on
tients who stay on more than one ward, will be more commorthe same ward as positive inpatients before and after tHe pos
for larger time windows, causin@, and consequently, to  tive inpatients were there. The high level of clustering esk
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The number of healthcare occasions and numberftdreli
ent wards visited during the period under study varies alywide

N
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200 for different values ofty (see Figur€&l7). The number of sepa-
rate healthcare occasions for all contacts, that iy t® 1, in

150 particular exhibits a fat tail. This holds to some extenttfor
number of visited wards as well. The individuals who had at

100 = least one contact with a duration of at least 100 days are thus

considerably less mobile between the wards in the hospital
system than those who have not.
. . The dataset is associated with one known systematic bias
0 in the sense that one single inpatient may be registered as an
0 2000 4000 6000 8000 inpatient on two wards at the same time such as when an inpa-
In-patients / Year tient is moved for a short period but is expected to returrr. Ou
analyses show that one single individual is registered an tw
separate wards 6734 times. We have not been able to show
that these biases have any significaffitet on the results we
are presenting in this paper and will therefore use the whole
dataset in our analyzes.

an
o

Mean duration of hospital stay

FIG. 4 Mean duration of hospital stay for the inpatients faclte
ward versus number of inpatients a year for the wards in ttebdae.

it reasonable to assume that more than one inpatient will-be i
fectious at the same time on the same ward, and consequently
that the disease would have existed among the inpatients
the ward both before and after the actual inpatient in qoesti
was on the ward.

c}{]DPENDIX B: Notes on the distribution of hospitalization
times

In Figure[® we have plotted the cumulative distribution, of
tqur, for all healthcare occasions in 2001. This allows us to
plot the cumulative distribution in the interval 1 to 365 day
for all of these healthcare occasions without interferdrama

This research is supported by The Swedish Emerge_ncgny finite size &ects of the material in this interval. The plot

Management Agency, European research NEST Projecl ows that the duration of hosbi e
pital stays exhibits a skewed
DYSONET 012911. The data has generously been madﬁower—law—like tail,p(taur) ~ ;7. We estimate the slope, in

available by Stockholm County Council with help from - ‘ - :  a
Torsten Siegel. The study was conducted with permissiortlhe interval fmin, 365] by fittinge i p(tau) = tg;,/7, where
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APPENDIX A: Further statistics is a normalization factor. A maximum likelihood procedure

was used for the estimation. The 95% confidence intervals
The dataset contains information for 570,382 ward admiswere estimated by bootstrapping. Figlite 8A &hd 8B show
sions, including date of admission, date of discharge, antiowa changes whety,, is increased.
ward identity. There were a total of 702 wards located at
52 different geographical units such as hospitals and nursing
homes. The mean daily number of patients on the wards foRPPENDIX C: A model of contact networks of patients
the two-year period varied between 1 and 69 (mean 10.05,
SD 9.44). Wards with a large number of inpatients per year To answer the question why increases withy, (for fixed
strongly tend toward shorter duration of inpatient hodpita At) we construct a simple agent-based model of a healthcare
stays, and vice versa, as shown in Fiddre 4. system from first principles: Suppose a healthcare system of
As described in the Sedidll, we define a network as theNw wards of equal capacity is intended to serve a population
individuals who have been inpatients some time during thef N individuals. Each day a non-hospitalized individual hos-
sample timeAt, and a contact as a link between two individu- pitalized with a probabilityp; and will stay for a random time
als who have been inpatients on the same ward for a duratian(of some distributiorP;) on wardw (how the ward is chosen
> to. Figurd®A an@bB show the number of noddsand the is discussed below). After hospitalization the patienttises
number of links,M, for nodes having at least one link with a transferred to another ward with probability for a duration
duration> t,. of a new t or discharged. This dynamic, giver\andty,
The N and M surfaces show a large variation in absoluteyields networks just like our real data did.
size. The surface for the number of vertices per node shows How shall we assign patients to the wards? The simplest
a similar surface. The quote between the largest value analssumption is to choose the wards with equal probability. As
smallest value is, however, smaller by several orders of-magseen in Figurgl9, this yields the shapeloandr seen in Fig-
nitude. urel3.
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FIG. 8 The best estimates of the slope foffatient values of for
the whole population (A) and for individuals younger thany@ars
24 old (B) The error bars are 95% confidence intervals generayed
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FIG. 7 The cumulative distributionp(x > X), for the number of  functions of the overlap timg, for a simulated healthcare system.

healthcare occasions per inpatient and the number of disitgds  For the “no dif.” curves, patients are assigned to a random ward,

per inpatient during the period 2001-2002. whereas for "dff.” curves, patients with a similar duration of hospital
stay share wards (which reproduce the functional forms of Bj.
The simulation parameters axe= 10000,N,, = 50, p; = 0.02/ day,

One important feature is missing from this modelffef- P2 = 1/3, At = 2500 days, and ~ t°. The curves are averaged

ent specialty wards hospitalize patients fafefient durations. ~ ©ver 10 runs of the algorithm.

If we incorporate this, the curves stay qualitatively thmsa

From the model, we understand that for large overlap times

the long-term patients form densely connected components— 1. Go through all healthy (non-hospitalized) patients.

otherwise the network is empty. The model is insensitive to With a probabilityp; hospitalize a patient. The dura-
parameter values. A skew@ function is, however, needed. tion of the hospitalization is given by;. Assign a ward
The algorithm consists of the following steps repeated t according to the methods listed below. In our simula-

times (that is, one of these steps corresponds to one day in  tion, we choosé; ~ t3. This is based on the observed
the simulation): distribution of hospitalization times (see Figlie 2).
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