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Yet in spite of advances in hospital treatment, hospitals continue to be a breeding ground for several airborne
diseases and for diseases that are transmitted through close contacts like SARS, methicillin-resistant Staphylo-
coccus aureus (MRSA), norovirus infections and tuberculosis (TB). Here we extract contact networks for up to
295,108 inpatients for durations up to two years from a database used for administrating a local public healthcare
system serving a population of 1.9 million individuals. Structural and dynamical properties of the network of
importance for the transmission of contagious diseases arethen analyzed by methods from network epidemiol-
ogy. The contact networks are found to be very much determined by an extreme (age independent) variation in
duration of hospital stays and the hospital structure. We find that that the structure of contacts between in-patients
exhibit structural properties, such as a high level of transitivity (1), assortativity (2) and variation in number of
contacts (3), that are likely to be of importance for the transmission of less contagious diseases. If these proper-
ties are considered when designing prevention programs therisk for and the effect of epidemic outbreaks may be
decreased.

I. LIMITATIONS OF TRADITIONAL EPIDEMIOLOGY

A central parameter within infection epidemiology is the
basic reproduction numberR0 (3). R0 is used to estimate
whether a disease is contagious enough to generate an epi-
demic in a specific population. In its simplest form, is defined
as the expected number of individuals that an infected indi-
vidual will infect in a completely susceptible population.If
all individuals in a population have approximately the same
number of contacts, and the probability that any pair of indi-
viduals will meet is equal,R0 can be estimated by the function
below:

R0 = cβD, (1)

wherec stands for umber of contacts per time unit,β or likeli-
hood of passing on an infection per contact, andD for the av-
erage time an individual is infectious (measured in same time
unit asc). To make an epidemic possible, the infected person
must infect more than one person on average. The threshold
value for epidemics is thereforeR0 = 1.

Studies have shown thatR0 in its simplest form may yield
misleading results. Anderson and May have demonstrated that
a great variation in number of contacts may compensate for
a low average number of contacts (3). This is because indi-
viduals with many contacts have a far greater probability of
becoming infected, and of passing on an infection. Therefore,
in populations with great variation in number of contacts,R0

should be calculated as:

R0 = cβD

(

1+
σ2

c2

)

(2)

whereσ2 denotes the variance in the number of contacts.
Another reason thatR0 can be an oversimplification is that

most contact networks studied are known to differ signifi-
cantly from random interaction.

II. NETWORK STRUCTURE AND DISEASE DYNAMICS

Many contact networks are characterized by a high level
of transitivity; that is, the number of triangles in the network
is much larger than is found in an average network having
the same frequency distribution of number of contacts (5). A
large clustering coefficient tends to slow down epidemics be-
cause the probability that an infected person’s contacts will
already be infected is very high in such a network (6; 7). A
common way to estimate clustering in a network is to estimate
its relative number of triangles, or more exactly, to calculate
the fractionC of all paths of length three in the network which
form a triangle:

C =
3ntriangle

ntriple
(3)

wherentriangle is the number of triangles (fully connected sub-
graphs of three vertices) andntriple is the number of triples of
vertices connected by two or three contacts. The factor three
is needed to normalizeC to the interval [0, 1].

Another difference between contact and random networks
is that most contact networks are assortative by number of
contacts (2). This means that individuals who have many con-
tacts tend to have contact with other individuals who also have
many contacts, and vice versa. The number of contacts is usu-
ally referred to as “degree” in network theory, and we will
use this term here. High assortativity decreases the epidemic
threshold value among individuals who have many contacts.
The standard measure is the assortative mixing coefficient r;
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that is, the symmetric correlation coefficient between the indi-
viduals’ degrees on each side of all contacts:

r =
4〈k1k2〉 − 〈k1 + k2〉

2

2〈k2
1 + k2

2〉 − 〈k1 + k2〉
2

(4)

whereki is the degree of theith argument in a list of the con-
tacts (2).

III. CONTACT NETWORKS OF PATIENTS

We will now construct networks generated from a unique
database consisting of 295,108 individuals who were regis-
tered as “in-patients” at any hospital in Stockholm county
(pop. 1.8 million) during 2001 and 2002.

We want a contact to represent closeness in space and time.
Our spatial requirement is that two patients should be on the
same ward. For the temporal aspect we let closeness be a net-
work parameter, and we regard a contact between patients as
established if they were hospitalized on the same ward for a
durationtol (overlap time) or longer. Atol = 0 means that con-
tacts between one patient who was admitted the same day as
another patient was discharged are included. Furthermore,we
let the sampling time window size∆t be another parameter.
The two parameterstol and∆t yield different networks that
are relevant to different diseases. For example, for diseases
such as measles, SARS, and norovirus, which spread rapidly,
a narrow time window will be appropriate (8); for diseases re-
quiring prolonged contact for transmission, like tuberculosis,
the relevant network is represented by a largertol.

IV. NETWORK STRUCTURAL PROPERTIES

A. Degree distribution

We will start by plotting the probability density function
P(k) for an individual to havek contacts. This function is
plotted for, respectively:

• One weekday in January.

• The entire month of January.

• The first six months of 2001.

• The whole period 2001-2002.

In Figure 1A we see the development of this contact struc-
ture from an exponential distribution to a degree distribution
with a truncated “fat tail.” It is clear that variation in thenum-
ber of contacts between individuals increases with time. Fig-
ure 1B shows the degree to which calculated using Equation 1
must be compensated according to Equation 2 for this increase
in variation. The skewed degree distribution in our case is
related to the power-law-like distribution of hospitalization
times (see Figure 2 and Sect. B). The distribution of hospital-
ization will indirectly lead to “preferential attachment”(9; 10)
(that is, a heightened probability of high-degree verticesto
form additional contacts)—a well known mechanism for pro-
ducing fat-tailed degree distributions (11).
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FIG. 1 The degree distribution and its effect on the reproduction
number. In the upper panel we see the probability density function
P(k) versusk (with logarithmic binning) for networks with overlap
tol = 0 and different time windows. The lower panel shows the cor-
rection to the basic reproduction numberR0 as a function of the time
window size fortol = 0. For example, for∆t = 2 years an epidemic
can occur by a disease five times less transmissible than predicted by
traditional models.
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FIG. 2 The probability that any hospitalization lasts∆t or longer.
In A, all data are used; in B, the patients over 60 years are removed
from the data set.

B. Transitivity and assortativity

We will now investigate how transitivity,C, and assortativ-
ity, r, vary with sampling time,∆t, and overlap time,tol.

In Figure 3(A) we display the clustering coefficient,C, and
in Figure 3(B) the level of assortative mixing,r, as functions
of our time intervalstol and∆t. We note that both parameters
exhibit a very similar functional form.C andr both decrease
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FIG. 3 The clustering (A) and assortative mixing (B) coefficients,C andr, as functions of sampling time,∆t, and overlap time,tol.

with ∆t when is held constant for smalltol, butincrease when
tol is held constant for large values oftol. Both parameters
behave in a similar way when∆t is held constant. For small
values oftol, the parameters first increase and then start to de-
crease as a function oftol. For large values oftol, both param-
eters first increase withtol until they converge at a high level
of clustering and assortativity.

The estimated high levels for theC and ther parameters,
and the resemblance in functional form between ther-surface
and theC-surface in Figure 3 are a consequence of the com-
partmental structure of the healthcare system. Assume a hy-
pothetical network,Ω in which all inpatients stay on the same
ward during the entire duration of∆t. In such a network,
each inpatient will have a link to each other inpatient on the
same ward. The level of clustering between the inpatients
will therefore equal 1, both locally on each ward and glob-
ally throughout the whole healthcare system, because no links
exist between inpatients on different wards inΩ. It is trivial
that the level of assortativity can only be defined if there is
a variation in ward size, and thatr in these cases must equal
1 because the degree of contacts on each side of each link
will be equal. Our results show that networks defined by a
large value oftol and a large value of∆t come very close toΩ.
BothC andr are large, and the vast majority of individuals in
these networks are registered as inpatients only once per ward
(see supplementary material). If we relax the restrictionson
Ω such that each inpatient stays on the same ward during the
entire period of∆t, theC andr parameters may drop below
1. This makes it possible for triples, which not are triangles,
to be formed between inpatients that stay on different wards,
and between inpatients that stay on the same wards but at dif-
ferent times. This also makes it possible for links to form be-
tween nodes with different degrees. The same occurs where
∆t increases whentol is held constant for low levels oftol. The
decay inC andr is a result of the skew distribution of hospital-
ization times (Fig. 2)—a long-term patient A will form a triple
(but not a triangle) with the many pairs of short-term patients
whose hospitalization does not overlap with each other’s but
does overlap with A. This situation, and the number of inpa-
tients who stay on more than one ward, will be more common
for larger time windows, causingC, and consequentlyr, to

decay over time.
That C increases withtol (for fixed∆t) may seem counter-

intuitive: As tol grows, the network will have fewer edges,
and also fewer triangles. We have constructed a simple agent-
based model that shows that a prerequisite for this is the ob-
served skewed distribution of hospital stays (see Sect. C).

V. SUMMARY AND CONCLUSIONS

Our study of a very large inpatient database shows that hos-
pital systems characteristically have a very large variation in
duration of hospital stays, which generates a correspondingly
large variation in number of contacts. We have further shown
that the clustering coefficient and assortative mixing depend
greatly on sampling time and the length of time that two in-
patients must spend together for contact to be effected. Both
of these coefficients,C andr, become extremely large in our
real-life network whentol and∆t are large. This is alarming
because it has been shown that both a high level of clustering
and a high level of assortative interaction decrease the epi-
demic threshold (1; 2). Any strategy to intervene with dis-
ease spread in a hospital environment must take into account
this departure from assumptions of random interaction and ho-
mogenous mixing. For infections with high transmissibility,
short incubation times and short duration of infectiousness,
such as norovirus infections and SARS, our finding may be
less important. However, for diseases such as tuberculosisor
MRSA characterized by low transmissibility and long dura-
tion of infectiousness, it becomes necessary to take this varia-
tion into consideration because a high variance will lower the
epidemic threshold.

Our findings indicate that the individuals with many con-
tacts are significant for the spread of infectious diseases with
long duration of infectiousness. These high-risk individuals
will probably be identifiable through hospital patient registra-
tion systems, and should be the first to be targeted by contact
tracing. The high level of clustering further indicates that it
may be worth screening all inpatients that have spent time on
the same ward as positive inpatients before and after the posi-
tive inpatients were there. The high level of clustering makes



4

FIG. 4 Mean duration of hospital stay for the inpatients for each
ward versus number of inpatients a year for the wards in the database.

it reasonable to assume that more than one inpatient will be in-
fectious at the same time on the same ward, and consequently
that the disease would have existed among the inpatients on
the ward both before and after the actual inpatient in question
was on the ward.
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APPENDIX A: Further statistics

The dataset contains information for 570,382 ward admis-
sions, including date of admission, date of discharge, and
ward identity. There were a total of 702 wards located at
52 different geographical units such as hospitals and nursing
homes. The mean daily number of patients on the wards for
the two-year period varied between 1 and 69 (mean 10.05,
SD 9.44). Wards with a large number of inpatients per year
strongly tend toward shorter duration of inpatient hospital
stays, and vice versa, as shown in Figure 4.

As described in the Sect. III, we define a network as the
individuals who have been inpatients some time during the
sample time,∆t, and a contact as a link between two individu-
als who have been inpatients on the same ward for a duration
≥ tol. Figure 5A and 5B show the number of nodes,N, and the
number of links,M, for nodes having at least one link with a
duration≥ tol.

The N and M surfaces show a large variation in absolute
size. The surface for the number of vertices per node shows
a similar surface. The quote between the largest value and
smallest value is, however, smaller by several orders of mag-
nitude.

The number of healthcare occasions and number of differ-
ent wards visited during the period under study varies a widely
for different values of,tol (see Figure 7). The number of sepa-
rate healthcare occasions for all contacts, that is, totol ≥ 1, in
particular exhibits a fat tail. This holds to some extent forthe
number of visited wards as well. The individuals who had at
least one contact with a duration of at least 100 days are thus
considerably less mobile between the wards in the hospital
system than those who have not.

The dataset is associated with one known systematic bias
in the sense that one single inpatient may be registered as an
inpatient on two wards at the same time such as when an inpa-
tient is moved for a short period but is expected to return. Our
analyses show that one single individual is registered on two
separate wards 6734 times. We have not been able to show
that these biases have any significant effect on the results we
are presenting in this paper and will therefore use the whole
dataset in our analyzes.

APPENDIX B: Notes on the distribution of hospitalization
times

In Figure 8 we have plotted the cumulative distribution, of
tdur, for all healthcare occasions in 2001. This allows us to
plot the cumulative distribution in the interval 1 to 365 days
for all of these healthcare occasions without interferencefrom
any finite size effects of the material in this interval. The plot
shows that the duration of hospital stays exhibits a skewed
power-law-like tail,p(tdur) ∼ t−αdur. We estimate the slope,α, in
the interval [tmin, 365] by fittingα in p(tdur) = t−αdur/τ, where

τ =

365
∑

i=tmin

i−α (B1)

is a normalization factor. A maximum likelihood procedure
was used for the estimation. The 95% confidence intervals
were estimated by bootstrapping. Figure 8A and 8B show
howα changes whentmin is increased.

APPENDIX C: A model of contact networks of patients

To answer the question whyC increases withtol (for fixed
∆t) we construct a simple agent-based model of a healthcare
system from first principles: Suppose a healthcare system of
Nw wards of equal capacity is intended to serve a population
of N individuals. Each day a non-hospitalized individual hos-
pitalized with a probabilityp1 and will stay for a random time
t (of some distributionPt) on wardw (how the ward is chosen
is discussed below). After hospitalization the patient is either
transferred to another ward with probabilityp2 for a duration
of a new t or discharged. This dynamic, given a∆t and tol,
yields networks just like our real data did.

How shall we assign patients to the wards? The simplest
assumption is to choose the wards with equal probability. As
seen in Figure 9, this yields the shape ofC andr seen in Fig-
ure 3.
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FIG. 5 The number of vertices (A) and number of edges (B),N andM, as functions of the overlap timetol and time window size∆t.
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FIG. 6 The average number of edges per vertex,N/M, as functions
of the overlap timetol and time window size∆t.

FIG. 7 The cumulative distribution,p(x ≥ X), for the number of
healthcare occasions per inpatient and the number of visited wards
per inpatient during the period 2001-2002.

One important feature is missing from this model: differ-
ent specialty wards hospitalize patients for different durations.
If we incorporate this, the curves stay qualitatively the same.
From the model, we understand that for large overlap times
the long-term patients form densely connected components—
otherwise the network is empty. The model is insensitive to
parameter values. A skewedPt function is, however, needed.

The algorithm consists of the following steps repeated t
times (that is, one of these steps corresponds to one day in
the simulation):

BA

FIG. 8 The best estimates of the slope for different values of for
the whole population (A) and for individuals younger than 65years
old (B) The error bars are 95% confidence intervals generatedby
bootstrapping.
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FIG. 9 he assortative mixing (A) and clustering coefficients (B) as
functions of the overlap timetol for a simulated healthcare system.
For the “no diff.” curves, patients are assigned to a random ward,
whereas for ”diff.” curves, patients with a similar duration of hospital
stay share wards (which reproduce the functional forms of Fig. 3).
The simulation parameters areN = 10000,Nw = 50, p1 = 0.02 / day,
p2 = 1/3, ∆t = 2500 days, andPt ∼ t−3. The curves are averaged
over 10 runs of the algorithm.

1. Go through all healthy (non-hospitalized) patients.
With a probabilityp1 hospitalize a patient. The dura-
tion of the hospitalization is given byPt. Assign a ward
according to the methods listed below. In our simula-
tion, we choosePt ∼ t−3. This is based on the observed
distribution of hospitalization times (see Figure 2).
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2. Go through all newly discharged patients. With prob-
ability p2 re-hospitalize a patient. The duration of the
hospitalization is given byPt. Assign a ward according
to the methods listed below.

3. If needed, construct the network according to the
method detailed in the Sect. III.

To assign a ward given a hospitalization time, we propose
two different methods. The first option is to select the ward
by uniform randomness. Clearly, this will, on average, make
all wards equally full. This method is used for the “no diff.”
curves in Figure 2. However, the hospitalization times are
very different—on some wards, the hospitalization time is
much longer than average; on others, people stay for very
short periods. To model this, we differentiate strictly between
the wards so that the patients on wardwi always stay a shorter
time than the patients on wardwi+1. We implement this by
generatingNrnd random numbers distributed according toPt.
Then we sort these values in increasing values oft and asso-
ciate ward 1 with thet-values [t1, . . . , ts1], ward 2 with thet-
values [ts1+1, . . . , ts2], and so on, such that the sum oft-values
are the same for all wards. During the iterations, a random
value of the array of random numbers is drawn and the pa-
tient is assigned to the corresponding pre-assigned ward. We
useNrnd = 106 for Figure 9. The same plot withNrnd = 104

yields indistinguishable curves. This is the method used for
the “diff.” curves in Figure 9. Finally, to obtain the curves
in Figure 9, we average the result of 20 runs of the algorithm
above.
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